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As an illustration of  the potential utility of  optimal-control  theory, we determine the time-varying 
electrode potential which maximizes the desired product  produced from a coupled, chemical-electro- 
chemical reaction sequence occurring in a well-mixed batch reactor for a specified reaction time. The 
reactant is electrochemically reduced to a stable intermediate which is itself a reactant for two com- 
peting parallel reactions: a homogeneous  chemical decomposi t ion to the desired product,  or a further 
electrochemical reduction to an undesired product.  If  the transfer coefficient o f  the first reaction is 
greater than that o f  the second, then chattering control, in which the potential switches at an infinite 
frequency between two limits, is optimal. If  the transfer coefficients have the opposite relationship, 
then a continuous,  time-varying potential is optimal. We compare the results of  applying the opti- 
mal, chattering-potential control with those resulting from the best continuous and steady controls. 
Improved selectivity results from a chattering control and may  be effected even in the presence of  sig- 
nificant mass-transfer resistance. Since an infinite-frequency control  cannot  be actually implemented, 
we discuss how a high-frequency, rectangular waveform can be determined which results in essentially 
the same product  distribution as a chattering control. A qualitative, simple-to-apply method to deter- 
mine whether selectivity enhancement is attainable using chattering controls is also illustrated. 

Nomenclature 

C i 

Cis 

c o 

E 
Ec,max 
F 
y 

J 
kl 

k2 

k3 

k? 
k; 
k; 
kmi 
Pa 

rAI 

r l u  

electrode surface area per unit volume of the 
reactor, cm -1 
bulk concentration of species i, mol cm -3 
concentration of species i at the electrode 
surface, mol cm -3 
initial concentration of species i, tool cm -3 
electrode potential, V 
maximum cathodic potential, V 
Faraday constant, 96 487 C mo1-1 
F/RT, V -1 
functional to be maximized 
heterogeneous rate constant for reaction 
leading to the formation of intermediate I, 
cm h -1 
heterogeneous rate constant for the electro- 
chemical decomposition of intermediate I, 
cm h -1 
homogeneous rate constant for the chemical 
decomposition of intermediate I, h -1 
akttf 
ak2tf 
k 1 tf 
mass-transfer coefficient of species i, cm h -1 
projection onto the set of admissible 
controls 
consumption rate of A in the electrochemical 
reaction A ~ I, molcm -2 h -1 
production rate of A in the electrochemical 
reaction I ~ U, mol cm -2 h -l 

R universal gas constant, 8.314Jmol -1K -1 
T reaction temperature, K 
t time, h 
tr batch reaction time, h 
t* dimensionless time, t / t f  
u(t) control vector profile 
fi(t) optimal-control profile 
Urea x maximum value of the control 
Umi n minimum value of the control 
b/ir control i in the relaxed set 
x vector of state variables 
xi dimensionless concentration of species i, 

ci/c ° 

Greek symbols 

O~ 1 

(2 2 

6 
O k 

O" 

[2 
~2r 

transfer coefficient of desired cathodic reac- 
tion 
transfer coefficient of undesired cathodic 
reaction 
thickness of the Nernst film, cm 
fraction of an infinitesimal time the control is 
held at u k, duty cycle 
step length in the direction of increasing J 
Hilbert space of admissible controls 
Hilbert space of relaxed controls 

1. Introduction 

In a globally competitive chemical industry, emphasis 
must be placed on the mode of operation of chemical 
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reactors, the heart of the process. It is therefore logical 
to strive for an increase in reactant conversion to the 
desired product while minimizing undesired reactions. 
A proper choice of process variables may enhance 
reaction selectivity; for example, Sakellaropoulous 
[1] discussed the effect of electrode potential, concen- 
tration, and mixing on the selectivity of certain 
reaction networks, and Sakellaropoulous and Francis 
[2] studied the effect of diffusion on selectivity within 
porous electrodes. In addition to the judicious 
choice for steady (static) settings for the process 
variables, selectivity may also be enhanced by optimal 
time-varying (dynamic) control. Optimal-control the- 
ory was introduced 25 years ago to calculate dynamic 
temperature-control strategies for chemical reactors 
to enhance reaction selectivity [3-5], but it has not 
been extensively applied to electrochemical reactors 
(e.g. [6,7]), although static optimization of electro- 
chemical processes is a well discussed topic. In con- 
trast to chemical reactors, the dynamic manipulation 
of voltage or current is much easier than temperature 
(or concentration, flowrate, pressure etc.) and offers 
intriguing possibilities for reaction engineering. Due 
to the typically large thermal inertia of reactors, rapid 
temperature variations cannot be implemented. Like- 
wise, rapid changes in the bulk concentration are 
attenuated by mass-transfer resistance and, in hetero- 
geneous reactors, cannot significantly affect the 
concentration at the surface, the site of the reaction. 
In contrast, it is possible to use control strategies in 
which the potential or current is rapidly perturbed 
since the electrical 'inertial' effect (double-layer 
charging/discharging) although present, is consider- 
ably diminished in magnitude in comparison to 
thermal or mass-transfer inertia. Actually, electro- 
platers routinely employ pulse plating (e.g. [8-11]); 
thus nonsteady control is currently practiced, 
although with a priori choice of the control waveform. 

A goal of this paper is to illustrate the utility of 
optimal-control theory and potential benefits realized 
upon its application. As a vehicle to do so, we deter- 
mine the optimal time-varying electrode potential 
that maximizes the production of the desired product 
D in a batch reactor for the E-C, E reaction shown in 
Fig. 1, a scheme similar to that for the reduction of 
nitrobenzene (A) to the desired product p-amino- 
phenol (D) and the undesired product aniline (U) 

E 

A ' I 

J 
-.<. 

D 

U 

Fig. 1. Depiction of the E-C, E reaction scheme. The intermediate I 
is a stable species, and the chemical step is homogeneous. 

through the intermediate phenylhydroxylamine (I) 
[12]. We emphasize that the particular chemistry 
examined is of secondary importance in comparison 
to the illustration of optimal-control concepts 
applied to an electrochemical reactor. We will demon- 
strate that the optimal control of electrode potential 
may lead to a substantial improvement in reactor 
performance over the best steady value. 

The optimal, time-varying control of potential or 
current can be used to achieve objectives other than 
maximizing productivity; for example, the current 
efficiency or selectivity can be maximized, or the 
power consumption can be minimized. In electro- 
deposition the objective may be the formation of a 
desired alloy or spatial-composition gradients when 
plating from multiple-salt baths. It is our intent to 
provide sufficient incentive for practitioners to con- 
sider devising optimal-control strategies for their 
particular application and objectives. 

The paper is organized as follows. We first describe 
the physical model of the reactor and the mathemat- 
ical problem statement. This is followed by a descrip- 
tion of the optimization method employed after which 
we discuss the computational results and provide a 
physical basis for the predicted trends. Finally, some 
generalizations are presented. Computational details 
are not presented, but are available in the dissertation 
upon which this work is based [13]. 

2. Model and problem statement 

2.1. Reactor model 

Simplifying assumptions are made about the trans- 
port and kinetic processes to reduce computational 
effort while still capturing the essential phenomena. In 
this manner, we focus on the improvements resulting 
from application of the optimal-potential control. 
We assume: (i) the reactor is well-mixed with mass- 
transfer resistance occurring by material diffusion 
through a Nernst diffusion layer as quantified with 
a mass-transfer coefficient; (ii) the homogeneous 
chemical reaction I ~ D follows first-order kinetics in 
the bulk and consumes an inconsequential amount 
of reactant in the thin Nernst layer; (iii) no other 
reactions in addition to those shown in Fig. 1 occur; 
(iv) the capacitance of the double layer is negligible; 
(v) the current distribution is uniform; and (vi) the 
charge-transfer reactions are irreversible with a 
Tafel-potential behaviour and a first-order depen- 
dence on reactant concentration. 

2.2. Mathematical problem statement 

The objective is to determine the time-varying 
electrode potential which maximizes co(tf), the 
concentration of the desired product at the end of a 
specified batch period tf. In a more general sense, 
we want to determine the control u(t) which 
maximizes the functional J[u(t)], where u(t) may be 
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potential or some function of it. For the example 
under consideration, the functional is 

d[u(t)] = eo(tf) (1) 

Only reactant A is present at t = O, which results in 
the initial conditions 

CA(0) = c ° (2) 

ci(O) = 0, i - - -  I, D, U (3) 

The material-balance equations must be satisfied and, 
subject to the listed assumptions, may be written as 

CA = --arAI = - a k l  CAs e-alfE (4) 

~ = aktCAs e - ~ f e  -- ak2Cls e-~2fe - k3c I (5) 

CD = k3cI (6) 

Cu (7) = arlu = ak2Cls e-a2fE 

where c i is the bulk concentration of species i, 
ci = dci/dt,  Cis is the concentration at the electrode 
surface which differs from the bulk because of the 
presence of mass-transfer resistance, rAi and riu are 
the consumption rate of A and the production 
rate of U per unit electrode area, respectively, kl and 
k 2 are potential-independent, heterogeneous rate 
constants, k3 is the first-order, homogeneous rate 
constant, a is the electrode surface area per unit 
volume of the reactor, E is the electrode potential 
relative to some reference electrode, and f =  F / R T .  
Before the material-balance equations can be solved, 
the surface concentrations must be related to the 
bulk values, but we defer that discussion until after 
the optimization technique used is presented. 

To restrict the number of variables to be optimized, 
the electrode potential is a priori constrained as 

Ec,ma x ~ E ~< ~c (8) 

where the cathode bound Ec,ma x may be imposed to 
avoid undesired electrolyte and/or solvent electro- 
chemistry, and the anodic bound ensures zero rates 
of the electrochemical reductions A --, I and ! --4 U. 
We also assume that no anodic decomposition of 
the solvent occurs. Actually, a finite anodic bound 
could be set to assure negligible electrochemical 
reaction rates of A and I and solvent; however, to 
reduce the number of parameters, the anodic limit is 
set to infinity. The two potential limits could be left 
unspecified and also be optimized, but the associated 
complexity would not add to our intent of illustrating 
the utility of optimal-control theory. 

In the remainder of Section 2, we discuss the appli- 
cation of optimal-control theory to the problem at 
hand. A reader not (yet) interested in these details 
might first skip to the Results and Discussion Section 
to gain an appreciation of the benefits to be gained 
upon its application. 

2.3. Dynamic optimization procedures 

The theory of optimal control is discussed in a number 
of textbooks (e.g. [14-17]), and optimal controls 

can be determined using a variety of techniques, for 
example: (i) application of variational calculus in 
which the optimal control is found as a solution to a 
system of coupled differential and algebraic equa- 
tions (e.g. [4, 5, 18, 19]); (ii) use of Pontryagin's 
maximum principle in which the control is chosen 
to maximize the Hamiltonian of the system (e.g. 
[20]); (iii) control-vector parameterization in which 
the control u(t) is written in terms of unknown 
parameters aj and postulated functions ~j(t) as 
u(t) = P]=laj~j(t), and the aj are determined by 
nonlinear programming procedures to maximize the 
objective functional (e.g. [14, 21-24]); or (iv) con- 
trol-vector iteration in which a gradient-search in 
the space of the controls is applied to maximize J 
(e.g. [25-27]). The first procedure is useful when the 
control is unconstrained; the second is an elegant 
mathematical relationship and is useful when the 
Hamiltonian of the system is linear in the control; 
and the third, while in many cases computationally 
efficient, limits the form of the control through the 
a priori chosen ~bj(t). Control-vector iteration is used 
here because of the ease with which control con- 
straints can be taken into account and the relatively 
straight-forward manner in which the calculations 
proceed. 

Before the control-vector iteration technique is dis- 
cussed, it is first advantageous to introduce two new 
control variables ul(t) and Uz(t ) defined in terms of 
the potential as 

U 1 (t) 7-- e - ~ , f E ( t )  (9) 

u2(t) = e -~2fE(t)  (10) 

with the two related by 

U 1 ~ U ;  I/c~2 (11) 

and, because of the constraints on the potential, are 
bounded as 

0 ~ U 1 ~ Ulmax Ulmax = e -c~'fE ..... (12) 

0 ~ U 2 ~ U2max U2ma x = e-C~2fE ..... (13) 

We shall calculate the optimal-potential profile E(t) 
by actually searching for the two optimal ui(t ). The 
motivation for introducing ul (t) and u2(t) is certainly 
not transparent at this point. However, we will show: 
(1) that the relationship between the two (Equation 
11) provides a geometric framework about which 
the optimal potential E(t) is determined (Section 
2.3.1); (2) that the class of controls from which the 
optimal is searched is enlarged by the introduction 
of u(t) (Section 2.3.3); and (3) that a simple quali- 
tative examination of the controls in this formulation 
can be performed to determine if the optimal- 
potential control is of a certain type (Section 3.2). 
These advantages outweigh the seeming complexity 
of introducing in the analysis two related controls to 
replace one. 
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The material-balance equations in terms of u are 
rewritten as 

CA=--aklCAsUl (14) 

ci=aklCAsU 1 -ak2c i su2-k3c i  (15) 

CD=k3cI  (16) 

cu=ak2cisU2 (17) 

In a dimensionless form, the vector set of the above 
equations, after elimination of the surface concen- 
trations, can be succinctly written as 

2 = f ( x ,  u) (18) 

where x and u are vectors representing the state 
(dimensionless concentrations) and controls 
(Equations 9 and 10), respectively. 

2.3.1. Control-vector iteration: The central idea of 
control-vector iteration is to find a v(t) which is a 
perturbation in a control vector u(t) such that J is 
increased; i.e. 

J[(u(t) + v(t)] > J[u(t)] (19) 

Once such a v(t) is found, the control is improved in 
an iterative manner by replacing u(t) by u(t) + v(t) 
until no further increase in J occurs. It can be shown 
that if the control is unconstrained, then Equation 19 
is valid if v(t) is a small perturbation in the direction 
of VJ[u(t)] where VJ[u(t)] is the gradient of the func- 
tional in the Hilbert space of controls [28]. Hence, the 
following iterative gradient-search scheme may be 
used to find the optimal control fi(t) 

u(g+l)(t) = u(g)(t) + ff(i)~'J[u(i)(t)] (20) 

where the scalar step-length cr (i) may be varied at each 
iteration i to hasten convergence, e.g. the Armijo step- 
length rule [29] may be applied. In application of 
Equation 20, the gradient VJ[u(t)] is calculated by 
[25, 28] 

VJ[u(t)] = VH[u(t)] (21) 

where VH[u(t)] is the gradient of the Hamiltonian H 
with components OH/Oui. For the dynamic system 
described by Equation 18 with a functional of the 
form given in Equation 1, the Hamiltonian H is 

H = p r(t)f(x(t),  u(t)) (22) 

where p(t) denotes the adjoint vector with elements 
pi(t) obtained by solving the adjoint equations 

OH O~xi x(tr) Pi -- OX i pi(tf) = (23) 

The five-step procedure to determine the optimal 
control fi(t) can now be outlined: (i) Guess an initial 
control vector u(i)(t); (ii) Solve numerically the 
material-balance equations; (iii) Solve numerically the 
adjoint equations; (iv) Calculate the gradient of the 
functional (Equation 21); and (v) Calculate the new 
control vector u(i+l)(t) from Equation 20. Steps 2 to 
5 are repeated until the functional J, calculated after 
step 2, has changed by less than 10-3%. 

In many problems, the controls are constrained to 
lie within a specified region f~ of the Hilbert space of 
controls and are called 'admissible controls'. In the 
example under consideration, the admissible controls 
are on line segment OCP in Fig. 2 and are specified by 
the bounds on Ug and Equation 11. In the presence of 
control constraints, Equation 20 cannot be applied as 
written since it may predict a control u (i+l)(t) that lies 
outside the permissible region. However, if ft is a 
convex set*, then the gradient-projection method can 
be employed to find the optimal control fi(t) in an 
iterative manner as [25-27, 30] 

u(i+l)(t) = Pa{u<i)(t) -[- o-(i)Vj[u(i)(t)]} (24) 

where Pa.('} signifies the projection of u(i)(t)+ 
cr(i)Vj[u(i)(t)] on to Q and is an identity operator 
for any control that lies in fL Note that in the latter 
case Equations 24 and 20 are identical. Algorithms 
can be implemented to hasten the convergence of 
Equation 24 by choosing an appropriate value for 
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Fig. 2. Line segment OCP is the set of admissible controls described by Equations 8 and 11 with cq > 42. 
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Fig. 3. The relaxed set of  controls f~r is depicted by the shaded region and is the convex hull of  the admissible set f~, line segment OCP. 
The relaxed set forms the control space over which the gradient-projection method is applied. The dotted lines demarcate regions I, II, III, 
and IV from which, during the application of  Equation 24, the controls are projected onto point O, segment OCP, point P, and segment OP, 
respectively. 

the step-length ~r (i) [26]; for example, we choose the 
Bertsekas step-length rule [13, 31]. The five-step calcu- 
lation scheme outlined in the previous paragraph to 
determine the optimal control fi(t) is slightly modi- 
fied for constrained controls: If  the predicted control 
u(i+l)(t) in step 5 is not in f~, then the projection oper- 
ation is carried out before returning to step 2. 

The control space of the example problem is non- 
convex (Fig. 2), and the gradient-projection method 
cannot be applied; however, if the convex hullt of f~ 
is formed, as shown on Fig. 3 and designated as 
the relaxed set f~r, the gradient-projection method 
may then be applied to ~ r  to calculate the optimal 
control fir(t). Since only controls which lie on OCP 
are physically realizable, the question must be 
addressed how does one actually establish a control 
for any Ur(t ) E f~r where Ur(t ) ~ f~. The literature 
discussed in the following section demonstrates that 
reaction velocities :t generated by any such Ur(t) for 
the example problem can be obtained by rapidly 
switching (i.e. at an infinite frequency) the controls 
from physically realizable u(t) E f L  The descriptive 
term applied to this control type is 'chattering 
control'. Hence, a chattering control using admissible 
u(t) is the manner to generate a relaxed control Ur(t). 

2.3.2. Chattering potential control: It has been shown 
(e.g. [32-34]) that when a control u switches 

* A set is convex if a weighted linear combination of any two 
elements of the set also lies in the set, with the weight factors being 
positive, less than one, and summing to unity. 

The convex hull of a set is the smallest convex set which encloses 
it. 

between m admissible values ( u l . . .  u k . . .  u m) over 
an infinitesimal time 6t ~ 0 such that the control is 
held at u k for a fraction O k of 6t (i.e. a chattering 
control), the reaction velocity )? for the system 
described by Equation 18 can be written as 

m 

Jc = Z ok f (x 'ue )  (25) 
k=l  

Fjeld [33] and Gamkrelidze [34] have explained 
the concept of chattering control using probability 
theory: O k is interpreted as the probability that the 
control at any instant is u k. Therefore, for a chatter- 
ing control resulting in a reaction velocity ~ which is 
equal to that generated by a relaxed control Ur(t), 
we can write 

m 

k = f ( X ,  Ur) = ~-~ok f (x ,u  k) (26) 
k=l  

where m, O k, and u k are to be determined, with an 
upper bound on m being the dimension of the vector 
f[32-34].  

To proceed further we first consider the mass-trans- 
fer conditions which would exist under a chattering 
potential control. The potential is switched between 
limit values so quickly that transient mass-transfer 
effects cannot occur; that is, the surface concentration 
of the reactants and products cannot adjust to the 
rapidly varying potential. It is impossible to apply a 
potential for an infinitesimal time, but it is possible 
to set the potential at each limit for a time that is 
sufficiently small such that surface concentrations do 
not vary significantly during it. To clarify this 
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concept, Fig. 4 illustrates the calculated concentration 
behaviour for a 'real system'. The concentrations of  
nitrobenzene (A) and phenylhydroxylamine (I) at 
the cathode surface of  a parallel-plate reactor calcu- 
lated by solving the transient-diffusion equation in a 
Nernst  layer are shown when the cell voltage is a 
periodic square wave [35]. The high-frequency behav- 
iour shows that the surface concentration obtains a 
nearly steady value, a so-called 'relaxed state'. There- 
fore, when the potential rapidly switches over the 
infinitesimal interval 6t between m admissible E k 
with corresponding u/k = exp [--aifEk], the reaction 
rates rhI and r iv  (Equations 14 and 17) may be 
written as 

m 

rAI = klCAs Z Okukl (27) 
k=l  

m 

riu = k2Cls Z Oku k (28) 
k=l  

since ~he surface concentrations of  A and I remain  
constant over 6t. • 

I f  the ith component  of  the average value of  the 
chattering control (i.e. EOkui k) is set equal to the 
corresponding component  of  the relaxed control (i.e. 
Uri), the resulting reaction velocities in the state equa- 
tions are identical to those obtained from applying 
the relaxed control; that is Equation 26 is satisfied by 
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Fig. 4. The concentrations of nitrobenzene (NB) and phenyl- 
hydroxylamine (PHA) at the cathode surface of a parallel-plate 
reactor over one dimensionless cycle when the cell voltage is a 
square wave switching between the two voltages Vhigh and Vlow at 
500 and 0.1 Hz [32]. The solution to the transient-diffusion equa- 
tion within the Nernst layers was used to generate these results 
which illustrate that at high-frequency oscillation the surface con- 
centration obtains a steady, so-called 'relaxed', value. 

writing 

Ur(t ) = ~ Oku k 
k=l  

m 

E ok= l O <~ ok <~ 1 
k=l  

(29) 

where u k is a vector (Hi, H2) T in Q (i.e. on segment 
OCP in Fig. 3) and O k and u ;~ may both, in general, 
be functions of  time. Because mr for the example 
problem is two dimensional and convex, every 
Ur(t) C f~r can be obtained by a linear combination 
of two controls on segment OCP, i.e. m = 2. This is 
an application of  a known property of  connected 
convex sets which states that any point u in an n 
dimensional set can be obtained by a linear combin- 
ation of  n points u j from the set [36], and is easily 
seen on Fig. 3 since a straight line can be drawn 
between any two points on OCP to intersect a Ur(t ) in 
the shaded region. Hence, we can write 

Ur(t) = O(t)ul(t) + (1 - O(t))u2(t) (30) 

From knowledge of  the coordinates of  the optimal 
fir(t) obtained by application of  the gradient-projec- 
tion method,  0 (t), u 1 (t), and u2(t) may now be deter- 
mined. 

2.3.3. Rectangular waveform as approximation to a 
chattering control: On applying the gradient- 
projection method to the example problem, the 
optimal relaxed control fir(t) was calculated to lie on 
segment OP if a I > a2. Therefore, the optimal 
control is a chattering control which switches 
between the two admissible values P(u = Umax) and 
O(u = Umin), and Equation 30 becomes 

Ur(t  ) = 0(t)Uma x -]- [1 --  0(t)]Umi n (31) 

where the weight factor 0 (t) is the instantaneous duty 
cycle, i.e. the probabili ty at any instant that the 
control is at Uma x. Equation 31 can be rearranged to 
solve for the O(t) which yields an average value of  
the chattering control equal to the optimal relaxed 
control fir(t) as 

O(t)-  fir(t) (32) 
Umax 

since Umin = 0. 
Clearly, it is impossible to switch the potential 

between the two limits at an infinite rate. However,  
there will typically exist a small, finite time for which 
if the potential is held for this duration transient mass- 
transfer effects do not occur to a significant extent, yet 
it is sufficiently large such that double-layer charge 
accounts for only a small fraction of the coulombs 
passed during it. (In a subsequent communication 
[37], we quantify this timespan in the course of  dis- 
cussing chattering cell-voltage control for a parallel- 
plate reactor. Puippe and Ibl [38] have addressed 
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similar considerations for the effect of capacitance 
in pulsed-current plating.) In other words, a high- 
frequency, rectangular-potential waveform will lead 
to a state profile which closely approximates that 
which would be obtained from a chattering control. 
The fraction of the cycle time O for which the poten- 
tial is maintained at the cathodic limit B e , m a  x in the 
rectangular-waveform approximation is determined 
by use of Equation 32 which indicates that the 
duty cycle 0 (t) of the chattering control varies contin- 
uously; but in applying a rectangular-potential profile, 
its duty cycle can only be varied discretely. These 
discrete values can be calculated by dividing the batch 
period into small, equally-spaced intervals At equal to 
the period of the high-frequency rectangular wave- 
form (At << tf) and approximating the continuous 
profile 0 (t) with a duty cycle Oi of a rectangular wave- 
form over an ith interval as 

1 [,i 
Oi = Jti_l O( t )d t  (33) 

The motivation for introducing the controls ul(t)  
and Uz(t ) can now be stated. In the relaxed control 
space fir, the gradient-projection method searches 
for an optimal control from a class which is larger 
than continuous or piecewise-continuous controls, 
i.e. the search also includes chattering controls. If  
the alternative approach of considering the potential 
E(t )  as the control were adopted, the control space 
is certainly convex and the gradient-projection 
method could be applied directly; it would lead, how- 
ever, only to continuous or piecewise-continuous 
controls. In contrast, the procedure we have outlined 
shows unequivocally that chattering control is 
optimal for the example problem if oz 1 > o~2, although 
its practical implementation is through a high- 
frequency, rectangular (i.e. piecewise-continuous) 
control. 

2.3.4. Continuous potential control: The above 
development demonstrates how the optimal- 
potential control may be calculated. It is also 
reasonable to examine the best, not necessarily 
optimal, control if the class of controls is restricted. 
In this vein, we have also studied and report upon 
the results if the control is a priori specified to be 
continuous and in the admissible control space f~, 
i.e. the potential is continuous and satisfies Equation 
8. Actually, as later discussed, if o~ 2 > o~1, the 
optimal control is continuous. 

We calculate the best continuous potential control 
by replacing ul by u~ 1/~2 in Equation 18, an 
approach equivalent to using E(t )  as the control. The 
dimension of the control space is thereby reduced by 
one to a straight line 0 ~< u2 ~< exp[-a2fEe,max] 
which is a convex set and the gradient-projection 
method can then be used to determine ~2(t). We start 
the gradient-projection iteration scheme with a con- 
tinuous u 2 (t) profile calculated from a guessed contin- 
uous E(t ) .  Since VJ[u(t)] is continuous given a 

continuous u(t), subsequent iterations lead to control 
profiles which are likewise, providedf,(x,  u) exist and 
are continuous [28] which is true for the example 
examined here. 

2.4. Elimination o f  surface concentrations f rom the 
state equations 

Before the controls can be calculated from the 
methods discussed above, the surface concentrations 
must be eliminated from the state equations. We 
accomplish this by applying a mass balance across 
the Nernst diffusion layer. In the following, the 
controls are written as ul and u2 and assumed to be 
continuous; however, the resultant effect of a chatter- 
ing control, as seen by Equations 27-29, is equivalent 
to a continuous relaxed control and the results pre- 
sented below (Equations 38-41) are also applicable 
with ui replaced by uir. 

For reactant A a material balance across the 
diffusion layer yields 

kmA(e a -- CAs ) = rAi = klCAsUl (34) 

where kmA is the mass-transfer coefficient of species A. 
Transient concentration changes which occur when 
the potential varies are not accounted for in Equation 
34. However, these can be neglected when the change 
in controls is small over the characteristic diffusion 
time tD(52/D).  Equation 34 is rearranged to relate 
the surface to the bulk concentration as 

kmACA 
CAs -- klUl + k m  A (35) 

Similarly, assuming the amount of intermediate I 
which reacts within the Nernst layer is negligible, i.e. 
k36/kmi << 1, a material balance yields 

kmI(CI - CIs) = riu - rAi = k2cisU2 - kleAsul (36) 

where km~ is the mass-transfer coefficient of species I. 
Rearranging Equation 36 and using Equation 35 
yields 

1 ( kmACA ~ (37) 
Cls - -  k2u2 q- kmi kmICI q- klu  1 klUl + kmAJ 

Equations 14-17 can be written in dimensionless 
form using Equations 35 and 37 to eliminate the 
surface concentrations as 

, kmAXA 
)CA = --klXAsUl XAs -- klUl + km A 

Jc I = k*lXAsU 1 -- k~x I - k~xisU 2 

k D = k~x I 

2 U = k~xisU 2 

, (  
Xls - -  k2u2 -Jr- km I kmlXI q- klul  

(38) 

(39) 

(4o) 

where x i  =-ci/c ° is the dimensionless bulk concen- 
tration of species i, k] - akitf  for i = 1 or 2, k~ = 
k3tf, 2 i - d x i / d t *  is the dimensionless reaction 
velocity, and t* = t / t f  is the dimensionless time. The 

 mAXA } 
klu  1 q-- kmA j 

(41) 
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Table 1. Parameters used in the computations. 

Parameter Value 

k~ 10 -4 
k~ 10 -2 
k~ 1.0 
al  0.4 
a2 0.2 
f Ec,max 39.1 

initial conditions become 

XA(0)---- 1.0 (42) 

xi(O ) = 0, i = I, D, U (43) 

3. Results and discussion 

The parameters used in the computations are reported 
in Table 1. It is not our intent to represent a particular 
chemical system; rather, we use the E-C, E reaction 
sequence to illustrate potential benefits of applying 
optimal-control theory. However, the parameters 
are similar (but not identical) to those for the reduc- 
tion of nitrobenzene [12]. To illustrate the effect of 
mass-transfer resistance on the optimal-potential 
profile, and in the spirit of introducing the fewest 
number of parameters, we arbitrarily set kmA = 
2kmr = 4kin where krn is the parameter varied in 
the computations from 1 to 105cmh -1. This 
range corresponds to a variation from 0.002 to 

200 in km/klUlmax , a ratio indicative of the kinetic 
to mass-transfer resistance, and spans a set of 
conditions from mass-transport to kinetic-controlled 
conditions. 

Regardless of the value of k* (i = 1,2, 3), the 
optimal-potential profile was a chattering control if 
al > a2 and was a continuous, time-varying poten- 
tial if a2 > al, although the latter case is not 
discussed quantitatively here. The extent of the 
improvement in production and selectivity upon 
applying the optimal potential above the best steady 
control will, however, depend upon the values of kT. 

3.1. Comparison of time-varying and steady-potential 
control 

Figures 5 and 6 are the best continuous and optimal 
chattering controls, respectively, calculated using 
the gradient-projection method with the parameter 
values of Table 1. Figure 7 shows the resultant con- 
centration profiles over the batch period, including 
that for the best steady-potential control, in the limit 
of low (Fig. 7a) and high (Fig. 7b) mass-transfer resis- 
tance. (The best steady potential was found by solving 
numerically Equations 38-43 for potentials differing 
by 0.01V from 1 to - I V  and locating that corres- 
ponding to the maximum XD(tf). Table 2 lists the 
resultant dimensionless concentrations of the desired 
and undesired species at the end of the batch period 
for all three control strategies. 

>, 
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10 2 
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0 . 0  I I 
0.001 0.010 0.100 1.000 

Dimensionless Time (t/ti) 
Fig. 5. The best continuous electrode potential at different mass-transfer resistances. 
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Fig. 6. The instantaneous duty cycle 0 (t) for the optimal chattering potential control at various mass-transfer resistances. The potential 
switches between Ec,max and ~ at effectively an infinite rate. 

The greatest production of the desired compound is 
obtained by the optimal chattering potential control, 
followed in order by the best time-varying continu- 
ous and steady-potential control. The improvement 
provided by continuous control decreases as the 
mass-transfer resistance increases because of the 
diminished sensitivity of the reaction rates to 
the potential; with chattering potential control, how- 
ever, the percentage increase in the production and 
selectivity above the steady-control value increases 
with decreasing km. This interesting result is caused 
by the small duty cycle (Fig.6) and the application 
of Ec,max during it; in this manner, mass-transfer lim- 

Table 2. Dimensionless concentrations of the desired and undesired 
products at the end of the batch period by applying the best steady, 
best continuous, and optimal chattering potential controls 

km / ( cm h -1) X ~D x ~) nt X~) TM 

105 0.29 0.53 0.55 
102 0.28 0.41 0.54 
10 0.27 0.27 0.51 
1 0.15 0.15 0.36 

con t  cha t  km/(Cm h I) x~; xv  xu 

105 0.55 0.14 0.10 
102 0.55 0.30 0.10 
10 0.55 0.45 0.12 
1 0.56 0.51 0.18 

itations are not as significant since electrochemical 
reactions are not occurring for the majority of the 
time during 6t. Of course, the production rate of the 
desired component D decreases for all three controls 
with increasing mass-transfer resistance. 

At kinetic-controlled conditions (kin = 10 5 cm h-l), 
the potential for continuous control (Fig. 5) and duty 
cycle for chattering control (Fig. 6) are largest initially 
which enables rapid conversion of species A to the 
intermediate I. After a short time, however, the poten- 
tial or the duty cycle quickly decreases so that the 
intermediate may decompose chemically to the 
desired compound with little electroreduction of I to 
the undesired compound. Regardless of the value of 
kin, the duty cycle and the cathodic potential for the 
chattering and the continuous control, respectively, 
decrease over the batch period to favour chemical 
decomposition of the intermediate to the desired 
product while keeping the undesired electroreduction 
of I to U low. In contrast, under steady-potential 
control it is not possible to restrict the formation 
of U, and its concentration continues to increase by 
consuming I which otherwise could have been 
used to form the desired product D (Fig. 7). As mass- 
transfer limitations become more of a concern 
(decreasing kin) , a large duty cycle or cathodic 
potential would favour the undesired reaction I --, U 
more than the desired reaction A ~ I. Therefore, 
as expected and as the calculations have indicated, 
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Fig. 7. The dimensionless concentration profiles x over the batch period on applying the best steady potential, the best continuous,  and 

5 1 optimal chattering potential controls for (a) low mass-transfer  resistance, k m = l0 c m h -  , and (b) high mass-transfer  resistance, k m = 
1 cm h -1 . 
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Z 

"U I 
U l m a z  

Fig. 8. Dependence of the reaction velocities given by 
Equations 38 and 41 on the control ul in the limit of 
no mass-transfer resistance. The set 2u is a nonconvex 
function of ul, whereas the set 2A is convex. Any 
point, Q, on the dotted line represents a velocity xu 
attained by perturbing ul between 0 and Ulmax at an 
infinite frequency at some duty cycle 0 (i.e. chattering 
control). 

the duty cycle and the cathodic potential decrease 
with km in the early portion of the reaction. At the 
largest mass-transfer resistance used (km = 1 cm h-l), 
only a small amount of A can be converted to 
the intermediate during the early stage of the 
batch reaction. Therefore, the continuous poten- 
tial and the duty cycle decrease slowly over the 
batch period so that intermediate is continually 
produced to maximize the production of the desired 
compound. 

3.2. Comments 

The use of chattering control to enhance product 
selectively is discussed in the chemical reaction- 
engineering literature. For example, Horn and Bailey 
[39] demonstrated that the selectivity of product P2 for 
the heterogeneous reaction scheme given below 
increases under chattering concentration control of 
the reactant R 

R ~ A  

R + A ~ 2P 1 (44) 

R-+P2 

where A is an adsorbed intermediate. They argued 
that selectivity enhancement is possible because the 
reaction velocities 2 are nonconvex functions of the 
concentration of the reactant R through the state 
equations 2 =f(x,u).  Their development is based 
upon a result of Warga [32] who determined that i f f  
is analytic, then any trajectory x(t) obtained from a 
velocity lying in the convex hull of f (x ,  u) can be gen- 
erated from a linear combination of the velocities that 
lie in f (x ,  u), i.e. by using chattering control. 

The solid lines on Fig. 8 illustrate the qualitative 
nature of the velocity sets (Equations 38 and 41) for 

the example E-C, E reaction scheme under kinetic- 
controlled conditions. The velocity set 2 U of the 
undesired electrochemical reaction is seen to be non- 
convex. Consequently, rapid perturbation of the 
control u 1 between 0 and ul m a x  at some duty cycle 0 
gives rise to an average reaction velocity, denoted by 
Q on the dotted line, which is always below the solid 
curve. From this simple geometric perspective, it is 
clear that a chattering control would result in a lower 
production of the undesired compound in comparison 
to steady control. 

Because electrochemical-reaction rates typically 
show an exponential dependence on potential, the 
controls ui(exp [-aifE]) form a nonconvex set for 
reactions with differing transfer coefficients a;. Based 
on this observation, a qualitative examination of 
the ui can determine whether a chattering potential 
control would be better than a continuous potential 
control. As an example, Fig. 9 shows the controls 
ul and u2 which are directly related to rates of the 
desired (A ~ I) and the undesired (I --+ U) electro- 
chemical reactions rAi and riu, respectively, for the 
reaction sequence of Fig. 1. The cathodic potential 
increases from its anodic limit (lower left portion), 
where reactions occur under kinetic-controlled con- 
ditions, to the cathodic limit (upper right portion), 
where the reactions may occur under mass-transfer 
controlled conditions. The case where the desired 
reaction is more sensitive to electrode potential 
(ax > a2) and the opposite situation (al < a2) are 
both sketched, lower and upper solid curves, respec- 
tively. As the steady potential increases cathodically 
from the anodic limit, the ratio rA~/ric goes through 
a maximum if oQ > o~ 2 since rAi increases faster with 
potential than r~u in the kinetic-controlled regime 
while the opposite occurs in the mass-transfer influ- 
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enced regime. Suppose the control u 1 corresponding 
to this best steady potential is Umx. The figure clearly 
shows that a chattering control switching between O 
and P with Ulavg = Ulfix has an associated U2avg (point 
T), which is less than u2 of a steady potential for 
al > a2 (point R), and greater than u2 of a steady 
potential for al < a2 (point S). Hence, a chattering 
potential control would increase rAi/rzu and reaction 
selectivity for a 1 > a 2 and decrease rAi/riu and 
reaction selectivity for al < a2 relative to a steady 
potential control. Fedkiw and Scott [40] determined 
heuristically for the E-C, E reaction scheme (among 
others) that for a~ > a 2 a chattering potential 
control results in a greater differential selectivity 
at a fixed production rate of the desired product D 
compared to the best steady control and vice versa 
for a 1 < a2. This present work is a confirmation of 
these earlier results• 

The simple qualitative analysis described above can 
be carried out for other reaction sequences to deter- 
mine whether a chattering potential control might 
lead to an improved reactor performance• If a chatter- 
ing control is optimal, then the resulting functional 
can be maximized by directly computing appropriate 
O k and u k (Equation 25), an approach we expand 
upon in a separate communication [37]. 

4. Summary 

Optimal-control theory was applied to calculate the 
time-varying electrode potential which maximizes 
the concentration of the desired product, D, at 
the end of a batch electrochemical reaction (Fig. 1). 
Chattering potential control was optimal if the trans- 
fer coefficient of the first reaction is greater than that 
of the second. A continuous potential control is 
optimal in the reverse case. The physical model for the 
reactor is fairly simple• Hence, the analysis by no 
means predicts the control strategy that should 
actually be implemented• However, the simplified 
perspective allows rapid computation, as compared 
to a more elaborate physical model, to provide a 
quick estimate of the improvements which could 
result on applying an optimal time-varying potential• 
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